
Analytical Bounds for Optimal Tile Size Selection

Jun Shirako1, Kamal Sharma1, Naznin Fauzia2, Louis-Noël Pouchet2, J. Ramanujam3,
P. Sadayappan2, and Vivek Sarkar1

1 Rice University {shirako,kamal.g.sharma,vsarkar}@rice.edu
2 The Ohio State University {fauzia,pouchet,saday}@cse.ohio-state.edu

3 Louisiana State University jxr@ece.lsu.edu

Abstract. In this paper, we introduce a novel approach to guide tile size se-
lection by employing analytical models to limit empirical search within a sub-
space of the full search space. Two analytical models are used together: 1) an
existing conservative model, based on the data footprint of a tile, which ignores
intra-tile cache block replacement, and 2) an aggressive new model that assumes
optimal cache block replacement within a tile. Experimental results on multiple
platforms demonstrate the practical effectiveness of the approach by reducing the
search space for the optimal tile size by 1,307× to 11,879× for an Intel Core-2-
Quad system; 358× to 1,978× for an Intel Nehalem system; and 45× to 1,142×
for an IBM Power7 system. The execution of rectangularly tiled code tuned by
a search of the subspace identified by our model achieves speed-ups of up to
1.40× (Intel Core-2 Quad), 1.28× (Nehalem) and 1.19× (Power 7) relative to
the best possible square tile sizes on these different processor architectures. We
also demonstrate the integration of the analytical bounds with existing search op-
timization algorithms. Our approach not only reduces the total search time from
Nelder-Mead Simplex and Parallel Rank Ordering methods by factors of up to
4.95× and 4.33×, respectively, but also finds better tile sizes that yield higher
performance in tuned tiled code.

1 Introduction
Modern computer systems utilize multi-level memory hierarchies in which the latency
of data access from higher levels are orders of magnitude higher than the time required
to perform arithmetic operations. Loop Tiling [7, 17, 23, 29, 35, 36] is a classical tech-
nique to enhance data reuse in memory hierarchy levels close to the processor. Recent
advances have made it possible to automatically generate parametrically tiled code,
even for imperfectly nested loops [2, 15, 18, 24]. It is well known that the choice of tile
sizes has a significant effect on performance, but the effective selection of optimized
tile sizes remains an open problem that has become ever more challenging as processor
memory hierarchies increase in complexity and depth.

Past work has pursued two main types of approaches for tile size selection, analyti-
cal and empirical. In analytical approaches, a compiler selects tile sizes based on static
analysis of loop nests and known characteristics of the memory hierarchy. Although
several analytical techniques for tile size selection have been proposed in the litera-
ture [8, 10, 13, 16, 19, 26–28], none has been demonstrated to be sufficiently effective

for use in practice. As a result, the gap between the performance delivered by the best
known tile sizes and those selected by an analytical approach has continued to widen,
thereby diminishing the utility of past analytical approaches.

Empirical approaches to tile size optimization treat the loop nest as a black box,
and perform empirical auto-tuning for a given architecture [4, 31–33] by actually exe-
cuting the tiled code for a range of different tile sizes. The highly successful ATLAS
(Automatically Tuned Linear Algebra Software) system [33] uses empirical tuning at
library installation time to find the best tile sizes for different problem sizes on the target
machine. One of the most challenging issues in empirical approaches for tile size se-
lection is the enormous search space that must be explored when tiling multiple loops.
As shown in many domains (e.g., by Goto and van de Geijn [14] for linear algebra
and by Datta et al. [11] for stencil codes), the optimal tile has different tile sizes in
different dimensions. The experimental results in this paper support this observation;
compared with the best “square” tile, i.e., equal tile sizes along all dimensions, the best
non-square tile showed performance speedups of up to 1.40, 1.28, and 1.19 on three dif-
ferent platforms (Xeon, Nehalem, and Power7, respectively). Though many empirical
tuning systems attempt to reduce the search space by only examining square tiles, our
results reaffirm the importance of including non-square tiles in the search space.

Hybrid approaches to tile size selection that combine analytical models and empir-
ical search have also been pursued [9, 37]. For example, Chen et al. [9] introduced a
framework that combines the use of compiler models and search heuristics to perform
auto-tuning. However, we are not aware of any hybrid approach that has been demon-
strated to be both broadly applicable and effective in practice. In this paper, we develop
an analytical approach that is both broadly applicable as well as effectively usable in
conjunction with various empirical search strategies for auto tuning.

Since the search spaces for tile size selection increase explosively for multidimen-
sional, non-square and multi-level tiling, an effective approach to prune the search space
is critical. Furthermore, while expensive empirical tuning is feasible for libraries such
as BLAS that are tuned once per machine and reused across applications, tiled user
codes usually require empirical search to be done much more rapidly since the search
needs to be performed on all the time-consuming loop nests in the application.

In this paper, we introduce a novel approach using analytical bounds to limit the
search space with empirical tuning for square and non-square tiling. As shown in Sec-
tion 6, the proposed approach to pruning the search space is complementary to, and can
be combined with, existing empirical search strategies; e.g., the analytical bounds can
be integrated with existing auto-tuning frameworks such as ATLAS [33]. Experimental
results show that our approach can reduce the search space by up to four orders of mag-
nitude. Reduction factors of up to 11,879, 1,978, and 1,142 were realized on a Xeon,
Nehalem, and Power7, respectively, for the loop nests that we studied.

Our approach employs a pair of analytical models to prune the search space — a
conservative model that underestimates the number of iterations in an optimal tile (DL),
and an optimistic model that overestimates the number of iterations in an optimal tile
(ML). DL (Distinct Lines) [12], a conservative model from past work, models the re-
quired cache capacity for a tile as its total data footprint. Under this model, any tiles
with a data footprint larger than the cache size are discarded, since they may incur

capacity misses during execution.However, this is a pessimistic assumption for many
applications, especially applications with streaming data accesses. We therefore intro-
duce an optimistic analytical model, ML (Minimum working set Lines), that assumes
an ideal intra-tile cache block replacement. Because DL and ML respectively provide
lower and upper bounds for tile sizes, we can use them to bound tile size search space
for empirical tuning. Our experiments show that this bounded search space still contains
optimal tile sizes, despite reductions of up to four orders of magnitude in the size of the
search space.

The paper is organized as follows. Section 2 reinforces the motivation for this work
via a case study that highlights some of the challenges arising from modern memory
hierarchies. In Section 3, we provide background on parametric tiling and the DL model
from past work. Section 4 introduces the new ML model for single-level tiling. Section 5
elaborates on how the DL and ML models can be used to bound the search space for
empirical tuning. Section 6 presents experimental results on three platforms using a
number of benchmarks to demonstrate the effectiveness of the approach. Optimal tile
sizes were always found within the reduced search space. Related work is discussed in
Section 7, and we conclude in Section 8.

2 Motivation and Case Study
Past work on performance models for tile size selection were usually geared towards
minimizing capacity and conflict misses for the first level of cache [10, 16, 34]. In this
section, we illustrate the impact of higher levels of data cache and Translation Looka-
side Buffer (TLB) on tile size selection. As a motivating example, we provide a detailed
analysis of the execution of a tiled matrix-multiply kernel. Figure 1 is a sample code
from [10] that uses the IKJ loop order.

/ / i n t e r− t i l e l o o p s
f o r i i = 1 t o N, Ti

f o r kk = 1 t o N, Tk
f o r j j = 1 t o N, Tj

/ / i n t r a− t i l e l o o p s
f o r i = i i t o min (i i +Ti ,N)

f o r k = kk t o min (kk+Tk ,N)
f o r j = j j t o min (j j +Tj ,N)

C[i] [j] += A[i] [k]∗B[k] [j] ;

Fig. 1: Tiled Matrix Multiply (IKJ loop order)

Tiling is critical in order to increase data locality in this case: Ti, Tj and Tk must
be selected such that the data accessed during the computation of a tile fits entirely
within the first level cache in order to avoid capacity misses. Reuse analysis suggests
that we set Ti to N, in order to obtain full temporal reuse of the matrix B along the i
loop [10]. This solution is motivated by the fact that no element of B will be used in
two different tiles, an apparently ideal solution in terms of L1 cache misses (provided
Tj and Tk are selected adequately). Furthermore, setting Ti = N allows us to explore
a two-dimensional search space Tk× Tj instead of a three-dimensional search space
Ti×Tk×Tj, thereby significantly reducing the search space for optimal tile sizes.

This solution focuses only on minimizing L1 cache misses. To illustrate the defi-
ciency of a Level 1 cache-centric approach, we examine performance variation on an

Intel Xeon (E7330 2.40 GHz processor with 32KB L1 cache, 3MB L2 cache, 16 entry
TLB1, and 256 entry TLB2 (4KB page size)) for a problem size of 3000×3000. Af-
ter performing an exhaustive empirical search over tile sizes, we found the optimal tile
size on this machine to be (Ti,Tk,Tj) = (60,10,120). Note that this optimal point has
unequal tile sizes in different dimensions because each dimension has a different data
reuse patterns on arrays, and a large tile size is needed along the vectorized dimension
(innermost tile size Tj) for effective vectorization. To illustrate the performance impact
of the values of Ti, we fix Tk = 10 and Tj = 120, and plot four metrics — execution
time, L1 data cache misses (L1 DCM), L2 data cache misses (L2 DCM), and L2 TLB
misses (TLBM DM) — for different values for Ti in Figure 2. Since the absolute values
of these metrics are incomparable, the graph plots use standard min-max normaliza-
tion to convert each metric to a value in the range 0 . . .1. The normalized value for
each metric is computed as the ratio, (x−min)/(max−min), where x, min and max
are respectively the absolute, minimum, and maximum value of that metric for different
values for Ti.

0

0.2

0.4

0.6

0.8

1

10

32

50

60

70

80

90

10
0

12
0

15
0

30
0

60
0

10
00

15

00

20
00

25

00

30
00

Matrix Multiplication IKJ 3000x3000
(Tk=10,Tj=120)

Norm Time
Norm L1_DCM
Norm L2_DCM
Norm TLB_DM

iterations in tile size, Ti

N
or

m
al

iz
ed

 m
et

ric

Fig. 2: Normalized Metrics for Matrix Multiplication with an IKJ Loop

First, we observe that L1 misses decrease as Ti increases, as expected. However, the
graph clearly shows that the optimal tile size does not occur at Ti= 3000. At Ti> 90, we
see an upward trend in execution time, in contrast to what is suggested by considering
just the L1 cache. As the cache footprint of the computation increases, TLB2 misses
and L2 misses increase, eventually leading to substantial degradation in execution time.

To better understand this effect, one must also consider the virtual-to-physical ad-
dress translation for this machine. A lookup for address translation is performed at both
the TLB levels. When an entry is not found in eiher TLB, a radix tree page walk is
performed, with higher (leftmost) bits fetched from the MMU Cache and lower (right-
most) bits from the L2 data cache. When address translation bits are not found in the
L2 cache, it causes DRAM accesses, leading to significant stalls for an application.
Thus, increasing an application’s footprint causes significant pressure on the data cache

and TLB. This page walk behavior is not just restricted to Intel architectures. AMD’s
Page Walking Cache and PowerPC’s Hashed Table approach exhibit a similar charac-
teristic, where address translation requires traversal of data caches in the case of TLB
misses [1, 3].

These observations led us to rethink the tile size selection model. While it is impor-
tant to optimize for L1 data cache to enable higher reuse, one also needs to consider the
reuse effect at higher levels of the memory hierarchy. This leads to considering multiple
memory hierarchy levels when searching the Ti×Tk×Tj space to find the best tile size
for even a single level of tiling. A key contribution of this paper is the development
of analytical models to bound the space of candidate tile sizes that take into account
multi-level data caches and TLBs. The results in Section 6 demonstrate the following:
(1) our analytical models significantly reduced the search space size, while preserving
the optimal points in the pruned space; (2) in most cases, the optimal points have non-
square tile sizes with performance improvements of up to 40% over square tiles; (3) the
developed model also effectively finds optimized tile sizes for parallel tiled code.

3 Background
3.1 DL: Distinct Lines
The DL (Distinct Lines) model was designed to estimate the number of distinct cache
lines accessed in a loop-nest [12, 27]. Consider a reference to a contiguously allo-
cated m-dimensional array, A, enclosed in n perfectly nested loops, with index variables
i1, · · · , in:

A(f1(i1, · · · , in), · · · , fm(i1, · · · , in)) (Fortran)
A[fm(i1, · · · , in)] · · · [f1(i1, · · · , in)] (C),

where f j(i1, · · · , in) is an affine function. An exact analysis to compute DL is only per-
formed for array references in which all coefficients are compile-time constants (i.e.,
for affine references). An upper bound for the number of distinct lines accessed by a
single array reference [12] with one-dimensional subscript expression f (i1, · · · , in) is

DL(f)≤min
(
(f hi− f lo)

g +1,
⌈
(f hi− f lo)

L

⌉
+1
)
,

where g is the greatest common divisor of the coefficients of the enclosing loop indices
in f , and L is the cache line size in units of array element size; f hi and f lo are the max-
imum and minimum values of the subscript expression f across the entire loop nest. In
practice, the relative error of this estimation is small when, as is usually the case, the
range (f hi− f lo) is much larger than the values of the individual coefficients of f . For
a multidimensional array reference A(f1, · · · , fm), the upper bound estimate [12] is as
follows (with a heuristic assumption that the first dimension of the array has at least L
elements).

DL(f1, · · · , fm) = DL(f1)×∏
m
j=2

(
(f hi

j − f lo
j)

g j
+1
)
.

Extensions of this model to account for multiple array accesses in a loop nest have also
been developed [12,27]. These DL definitions for an entire loop nest are also applicable
to a tile whose loop boundaries are expressed using tile sizes. In such a case, the DL
definition is a symbolic function of tile sizes t1, · · · , tn denoted by DL(t1, · · · , tn) [27].

The DL definition can also be applied to any level of cache or TLB by selecting its
cache line size or page size as L. However, the DL model ignores possible replacement

of cache lines within a tile, and therefore provides only conservative upper bounds for
the number of cache lines needed.

3.2 Parametric Tiling
Although production compilers today may have limited tiling capability, there have
been significant recent advances in automatic source-to-source transformations for tiling
and several systems for parametric tiling have been developed and made publicly avail-
able such as TLOG [24], HITLOG [18] and PrimeTile [15]. With such tiled-code gen-
erators, it is now possible to generate tiled code for compute-intensive inner kernels
(including imperfectly nested loops), that can be tuned to the cache characteristics of
the target platform. Thus, just as ATLAS [33] is used in auto-tuning dense linear alge-
bra codes, it becomes feasible to use auto-tuning for user kernels such as stencil-based
computations. However, unlike library kernel optimization, exhaustive search of the tile
parameter space over several hours to days is generally not attractive for tuning user
kernels. This motivates the approach developed in this paper to significantly prune the
search space.

4 ML: Minimum Working Set Lines
We now introduce ML (Minimum working set Lines), a new analytical cost model based
on the cache capacity required for a tile when intra-tile reuse is taken into account. We
define the ML model next and then develop an approach to computing ML for a tile by
first constructing a special sub-tile based on analysis of reuse characteristics and then
computing the DL value for that sub-tile. Although we mainly focus on cache capacity
in this section, the model is directly applicable to TLBs by replacing the cache line size
with the page size.

4.1 Operational Definition of ML
The essential idea behind the ML model is to develop an estimate of the minimum cache
capacity needed to execute a tile without incurring any capacity misses; this minimum
cache capacity can be viewed as the minimum working set size for the tile. Consider a
memory access trace of the execution of a single tile, run through an idealized simula-
tion of a fully associative cache. The cache is idealized in that its size is “unbounded”
(i.e., any access to a data element in the tile will never lead to a capacity miss) and an
optimal replacement policy, where a line in the cache is marked for replacement as soon
as the last reference to any data on that line has been issued (through an oracle that can
determine all future references of the tile). Before each memory access, the simulator
fetches the desired line into the idealized cache if needed. After each memory access,
the simulator evicts the cache line if it is the last access (according to the oracle). ML
corresponds to the maximum number of lines (high water mark) held in this idealized
cache during the execution of the entire trace for the tile.

4.2 Model of Computation
In this paper, we focus on the class of affine imperfectly nested loops, where loop
bounds and array access expressions are affine functions of the surrounding loop it-
erators and program constants. For this class of program, it is possible to restructure the

code automatically [6,15] to expose rectangular tiles of parametric size. Assuming that
a system such as PrimeTile [15] has already been used to generate parametric rectangu-
larly tiled code, we focus on the problem of tile size optimization for such codes.

The outermost loop inside a tile (i.e., the outermost intra-tile loop) is denoted by
loop1, and the innermost intra-tile loop is loopn. Since tiles are rectangular by con-
struction, loopi (1 ≤ i ≤ n) has the same trip count for any of its executions. Note that
the case of partial tiles is handled with prolog/epilog code [15]. The iteration domain
of a tile is represented with a tuple [T1; T2; · · · ; Tn]. A tile is surrounded by the loops
iterating on all tiles, i.e., the inter-tile loops. In this paper, we assume a single level of
tiling; extension to multi-level tiling is a subject for future work.

4.3 Distance in Tiled Iteration Space
A specific instance of the loop body is identified by an iteration vector, that is, a coor-
dinate in the iteration space, noted p = (p1, p2, · · · , pn). The distance between two iter-
ation vectors p and p′ is expressed as the distance vector d = (d1,d2, · · · ,dn) = p′− p.
The scalar distance between two iteration vectors is the number of instances of the
inner-most loop body to be executed (in lexicographic ordering) between these two
iteration vectors. For instance, in a tiled loop nest the scalar distance between two con-
secutive iterations of the innermost loop loopn is 1, representing the shortest possible
scalar distance. It corresponds to the distance vector (0, · · · ,0,1) = (p1, · · · , pn−1, pn +
1)− (p1, · · · , pn−1, pn), for any values of p1, · · · , pn. It is always possible to find a sub-
tile tuple that corresponds to this scalar distance. Here it is [1; 1; · · · ; 1], i.e., the tuple
describing an n-dimensional rectangle containing exactly one point. We call this form
a sub-tile tuple expression of the tile tuple [T1; T2; · · · ; Tn].

Let us now consider the distance vector (1,2,3)= (p1+1, p2+2, p3+3)−(p1, p2, p3).
In general, to compute the associated scalar distance, we first compute the scalar dis-
tance corresponding to two consecutive iterations for each of the intra-tile loops: 1 for
loop3, T3 for loop2, and T2T3 for loop1. The scalar distance is computed by the dot
product (1,2,3).(T2T3,T3,1)t = T2T3 + 2T3 + 3. It is always possible to compute an
associated sub-tile tuple expression corresponding to the sub-part of the tile iteration
domain bounded by the two iteration points p and p′, by combining multiple rectangles
defined by individual sub-tile tuples. Here, [1; T2; T3] + [1; 2; T3] + [1; 1; 3] is the
associated sub-tile tuple expression.

One iteration of loopi strides over sizei, which is the total number of iteration points
within the loop body of loopi. sizei is defined in both scalar and sub-tile tuple expression
as follows:

sizen = 1 = [1; 1; · · · ; 1] (i = n);
sizei = ∏

n
j=i+1 Tj = [1; · · · ; 1; Ti+1; · · · ,Tn] (i < n).

Using size vector size = (size1,size2, · · · ,sizen), we define the scalar distance of the
distance vector d = (d1,d2, · · · ,dn) and its sub-tile tuple expression as follows:

Scalar distance: size ·d = ∑
n
i=1(di× sizei);

Sub-tile tuple: ∑
n
i=1([1; · · · ; 1; di; Ti+1; · · · ; Tn]).

4.4 Temporal and Spatial Reuse Distance
Temporal and spatial data reuse are expressed using widely used definitions of “reuse
distance vectors” (often shortened to “reuse vectors”) [34]. A number of previous efforts

introduced methods to compute spatial reuse vectors [34] while temporal reuse vectors
are computed from standard dependence analysis.

f o r (p 1 = [low1 : low1+T 1−1])
f o r (p 2 = [low2 : low2+T 2−1])

f o r (p 3 = [low3 : low3+T 3−1])
B[p 1] [p 2] [p 3] = A[p 1] [p 3] + B[p 1 −2][p 2 −3][p 3] ;

Fig. 3: Sample Code

For array A in Figure 3, the pair ((p1, p2, p3),(p1, p2 + 1, p3)) has temporal reuse
with a reuse distance vector of d1= (0,1,0). The pair ((p1, p2, p3),(p1, p2, p3+1)) has
spatial reuse in array A with a reuse distance vector of d2 = (0,0,1). For array B, the
pair ((p1, p2, p3),(p1 + 2, p2 + 3, p3)) has a temporal reuse vector d3 = (2,3,0), and
the pair ((p1, p2, p3),(p1, p2, p3 +1)) has a spatial reuse vector d4 = (0,0,1).

In Section 4.3, we defined the scalar distance for these reuse distance vectors. For
Figure 3, the size vector is size = (T2T3,T3,1). The scalar distance of temporal reuse
vector d1 = (0,1,0) is calculated by size · d1 = T3, and the scalar distance of spatial
reuse vector d2 = (0,0,1) is size · d2 = 1. They are also represented as sub-tile tuple
expressions: [1; 1; T3] and [1; 1; 1], respectively. Finally, we call the largest scalar
distance Maximum Reuse Distance, or MRD; the MRD is defined on a per-array basis.
For example, the MRD for array A in Figure 3 is [1; 1; T3], and MRD for array B is
[2; T2; T3]+ [1; 3; T3] due to d3.

The approximation of reuse distance vectors for non-uniform reuse patterns is still
an open question. As described in Section 5, ML is used to derive the upper bounds
of tile sizes and conservative approximation may make the tile size boundaries smaller
than optimal points. Therefore, we ignore non-uniform reuse so as to estimate tile sizes
optimistically, and leave approximation of non-uniform reuse distance to future work.

4.5 Computation of ML
Using Maximum Reuse Distance for array X, we define ML for array X as follows.
First, a pair of iteration instances (p1, p2, · · · , pn) and (p1+d1, p2+d2, · · · , pn+dn) has
the following Maximum Reuse Distance for array X:

MRDX = ∑
n
i=1([1; · · · ; 1; di; Ti+1; · · · ; Tn]).

In order to exploit all data locality related to array X, the data at (p1, p2, · · · , pn) must
not be removed from the cache memory (p1 +d1, p2 +d2, · · · , pn +dn) is accessed. The
cache must keep all the distinct cache lines for array X within the distance of MRDX .
Since the MRD is also represented as a sub-tile tuple, the ML for array X is equivalent
to the DL of X for the sub-tile tuple defined by MRDX . Thus we have

MLX = DLX (MRDX).
To compute DL of a sum of sub-tile tuples, we compute the sum of DL of each individ-
ual sub-tile tuple. As shown above, the expression of Maximum Reuse Distance MRDX
does not include T1, therefore, MLX is also independent of T1. This is true for any ref-
erence: the sub-tile tuple never contains T1 in its components, as shown in Section 4.3.
For instance, MRDB and MLB for array B of Figure 3 are as follows.

MRDB = [2; T2; T3]+ [1; 3; T3];

MLB = DLB(MRDB) = DLB(2,T2,T3)+DLB(1,3,T3).
ML is defined as the sum of the MLX values for each array X accessed in the tile:

ML = ∑X (MLX).
In order to leverage all intra-tile data locality, we should select tile sizes so that ML
is smaller or equal to the number of cache lines of the target cache memory, which is
usually level-1 cache.

4.6 Example
Figure 1 from Section 2 shows a single-level tiling example for Matrix Multiplication.
We assume an element of array has 8 Bytes, and the cache line size of L1/L2 is 64 Bytes
(a cache line contains eight elements). DL is calculated as follows:

DL=DLC(Ti,T k,T j)+DLA(Ti,T k,T j)+DLB(Ti,T k,T j) =Ti
⌈

T j
8

⌉
+Ti

⌈T k
8

⌉
+T k

⌈
T j
8

⌉
.

Also, the MRD for each array is computed from size vector size = (T kT j, T j, 1)
and reuse distance vectors. MRDC = (T kT j, T j, 1) · (0,1,0) = [1; 1; T j], MRDA =
(T kT j, T j, 1) ·(0,1,0) = [1; 1; T j], and MRDB = (T kT j, T j, 1) ·(1,0,0) = [1; T k; T j]. As-
signing each MRD to the corresponding DL expression, the ML for single-level tiling
is computed as

ML = DLC(1,1,T j)+DLA(1,1,T j)+DLB(1,T k,T j) =
⌈

T j
8

⌉
+1+T k

⌈
T j
8

⌉
.

5 Bounding the Search Space by using DL and ML
This section presents how our DL/ML model bounds a tiling search space. As discussed
in Section 4, ML is used for optimistic cache and TLB capacity constraints for intra-
tile data reuse and gives the upper boundaries for estimated tile sizes. In contrast, DL
is used for conservative constraints, and gives the lower boundaries. These lower and
upper boundaries drastically reduce the search space for single and multi-level tiling.
Furthermore, DL, which represents the number of distinct lines within a tile, can be
used as a capacity constraint for inter-tile data reuse on higher levels of cache/TLB.
The extension of our approach to multi-level tiling is the subject for future work.

5.1 Capacity Constraint for Intra-tile Reuse
Section 4.5 shows ML for single-level tiling can be dependent on tile sizes T2, T3, ...,
Tn and is independent on T1 while DL can depend on all tile sizes T1, T2, ..., Tn. CS1
represents the number of cache lines or TLB entries at level-1 cache or TLB memory.
All tile sizes within the lower boundaries due to DL and upper boundaries due to ML
satisfy the following constraints.

DL(T1,T2, · · · ,Tn)≥CS1, ML(T2,T3, · · · ,Tn)≤CS1.
We have two bounded regions according to cache and TLB. In our approach, we con-
sider the union of both the regions as candidates for optimal tile sizes, e.g., a point that
is within the DL/ML region due to cache but outside the region due to TLB is also a
candidate.

5.2 Capacity Constraint for Inter-tile Reuse
Although Section 5.1 shows the boundaries to maximize intra-tile data reuse of level-1
tile, the outermost tile size T1 is actually not bounded above by the ML constraint. As
discussed in Section 2, this corresponds to traditional single-level tiling to fit within

single-level cache, where the outermost loop is not tiled [8, 10, 20]. However, the out-
ermost tile size affects inter-tile reuse on higher levels of cache/TLB, and too large tile
size would harm the inter-tile data locality and even the overall performance. Using DL
definition, we define an additional capacity constraint in order to preserve inter-tile data
reuse on level-k (k > 1) cache/TLB as follows:

DL(T1,T2, · · · ,Tn)≤CSk.
This inequality, which ensures that whole distinct lines within the tile can be kept on
level-k cache/TLB and guarantees the inter-tile data reuse, bounds the outermost tile
size T1. It is a subject for future work to select the suitable k according to the target
system. In the experiments in Section 6, we select the highest level of cache/TLB as k.

5.3 Empirical Search within Bounded Search Space for Single-level Tiling

Described in previous section, DL/ML capacity constraints for single-level tile consist
of the following three conditions.

DL(T1,T2, · · · ,Tn)≥CS1 (lower boundary for intra-tile reuse);
ML(T2,T3, · · · ,Tn)≤CS1 (upper boundary for intra-tile reuse);
DL(T1,T2, · · · ,Tn)≤CSk (upper boundary for inter-tile reuse).

Empirical search finds the optimal tile sizes for T1,T2, · · · ,Tn that minimizes the objec-
tive metrics such as execution time.

0 

100 

200 

300 

400 

500 

1  101  201  301  401  501 

Tk
 

Tj 

ML/DL region 

Fig. 4: Search Space for Matrix Multiplication for Ti = 60

Let us calculate the search space of Figure 1, which is a single-level tiling example
of Matrix Multiplication. We assume the same experimental platform and program size
as Section 2 and Section 4.6; L1/L2 cache contains 512/49152 lines respectively. 4 The
capacity constraints: DL = Ti

⌈
T j
8

⌉
+Ti

⌈
T k
8

⌉
+T k

⌈
T j
8

⌉
≥ 512,

ML =
⌈

T j
8

⌉
+1+T k

⌈
T j
8

⌉
≤ 512, and DL = Ti

⌈
T j
8

⌉
+Ti

⌈
T k
8

⌉
+T k

⌈
T j
8

⌉
≤ 49152.

Figure 4 shows the bounded 2-D search space for T k and T j when Ti is 60, which is
much smaller than the original 2-D search space 3000×3000, and the optimal tile size
Ti = 60, T k = 10, and T j = 120 is found within the bounded region.

4 We omit details on TLB constraints due to space limitations.

5.4 Compiler Pass for Bounded Search Space
Figure 5 shows the compiler framework to implement the DL-ML bounded search space
algorithm. This implementation requires standard compiler tools, such as dependence
vector computation and array index expression extraction, readily available in most
modern compilers. This is the only program-specific data required to compute the DL-
ML equations. Plugging the additional machine-specific information about the different
cache level sizes and associated line sizes results in a bounded search space of candidate
tile sizes, which is drastically smaller than the original set of candidates. Using these
bounds, a tile size tuning framework explores only a fraction of points in the original
search space, thereby considerably reducing the tuning overhead.

Input
loop nest

Extract
array index
expressions

Calculate
dependence

vectors

Compute
DL bounds

Compute
ML bounds

Bounded
Tile size search

region

Fig. 5: Compiler Implementation of DL-ML Bounding

6 Experimental Results
An experimental assessment was performed on three Linux-based systems: an Intel
Core i7 920 running at 2.66 GHz with shared L3 cache (labeled Nehalem), an IBM
Power 7 running at 3.55 GHz (Power7), and an Intel Xeon E7330 running at 2.40GHz
with shared L2 cache (Xeon). Previous work has used published cache capacity data
from manufacturers in analytical models for cache performance. However, due to fac-
tors such as page table entries, OS processes, etc., the full capacity of higher level
caches may not be actually available for use by the application. We report in Table 1
the effective capacities for the cache and TLB — the published capacity Spec versus
the effective capacity Effective that was observed using micro-benchmarks for hard-
ware characterization [25]. It may be seen that the effective capacity may be as low
as half the documented size, which can affect the DL/ML capacity constraints. In our
experiments, we used the effective capacities. The impact of using published capacities
instead of effective capacities is studied in Section 6.2.

Table 1: Cache characteristics of the architectures considered
L1 L2 L3 Line Size TLB1 TLB2 Page Size

Spec. Effective. Spec. Effective. Spec. Effective. Entries Entries
Nehalem 32kB 32kB 256kB 256kB 8MB 5.2MB 64B 64 512 4kB
Power7 32kB 32kB 256kB 256kB 32MB 18.4MB 128B 64 512 64kB
Xeon 32kB 32kB 3MB 1.5MB N/A - 64B 16 256 4kB

We studied five benchmarks using double precision floating point arithmetic. mat-
mult is a standard matrix-multiply kernel: C = A.B; dsyrk is a symmetric rank 1 com-

putation: C = α.A.AT + β.C; and dtrmm is a triangular in-place matrix multiplica-
tion: B = α.A.B (A is triangular). We also considered a representative 9-point two-
dimensional stencil computation, 2d-jacobi, and a 2D Finite Difference Time Domain
method, 2d-fdtd. Parametrically tiled code for each benchmark was generated using the
publicly available PrimeTile code generator [15] after any necessary preprocessing such
as skewing [6] to ensure that rectangular tiling of the loops was legal. For all tested ver-
sions, including the original code, the same compiler optimization flags were used: for
Nehalem and Xeon, we used Intel ICC 11.0 with option -O3; for Power7, we used IBM
XLC 10.1 with option -O3.

6.1 Performance Distribution of Different Tile Sizes
For each benchmark, in the case of single-level tiling, we conducted an extensive set of
experiments, for a subset of tile sizes for each loop ranging from 1 to the loop length, in
steps of 10 (approximately). Figure 6a plots the data for matmult (size 3000× 3000) for
the three considered architectures. A point (x,y) in this cumulative plot indicates that
x% of the tile combinations achieved normalized performance greater than or equal to
y, where normalization is with respect to the best performing case among all runs and
performance is inversely proportional to execution time.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Cumulative subsets of points searchedPe
rfo

rm
an

ce
 n

or
m

ali
ze

d
to

 b
es

t p
er

fo
rm

an
ce Xeon

Power7
Nehalem

0.9 Good region

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Cumulative subsets of points searchedPe
rfo

rm
an

ce
 n

or
m

ali
ze

d
to

 b
es

t p
er

fo
rm

an
ce Xeon

Power7
Nehalem

0.9 Good region

Fig. 6: Performance Distribution for (a) matmult-3000x3000 and (b) 2d-jacobi-
50x4000x4000 on Nehalem, Xeon, and Power7

It may be observed that only a small fraction of the tile combinations achieve very
good performance — for example, on the Nehalem, only 2% of the tile size configura-
tions achieve more than 90% of the maximal performance. Also, there is a very large
variation in performance between the best and worst tile size choices, up to a factor of
10. The performance distribution also varies for different targets — for Power7, over
20% of the cases provide good performance. Further, we have also observed that the
points with good performance are not uniformly distributed in the search space but are
clustered in clouds. This highlights the complexity of the search problem when using a
blind random search — convergence towards an optimal point may require sampling of
a significant fraction of the search space.

Figure 6b shows a similar analysis for the 2d-jacobi benchmark. For the target ma-
chines, we observe quite a different trend compared to matmult: about 55% of the tile
sizes achieve 90% or more of the maximal performance for Nehalem, while this ratio
significantly decreases for the two other architectures, down to 1% for Xeon.

6.2 Search Space Reduction by DL/ML Model
To assess the effectiveness of search space pruning by use of the DL/ML model, Fig-
ures 7-11 show the bounded search region superposed with a marking of all tile choices
that achieve over 95% of the maximal performance on Nehalem and Power7. 5 In each
3-D space, the x, y, and z axes show tile size values for the outer loop, middle loop and
inner loop respectively. These tile choices are called “best” points in this section. The
surface in each 3-dimensional plot represents the DL/ML upper boundary for single-
level tiling, considering intra-tile reuse for level-1 cache and TLB, and inter-tile reuse
on the highest level of cache and TLB, as described in Section 5. In order to enhance
viewability, the figures do not show the lower DL boundaries, since they fall below the
best points.

Fig. 7: Best tile sizes (within 95% and more of the optimal) for matmult-3000x3000
with k-i- j loop ordering on 7a Nehalem and 7b Power7.

Fig. 8: Best tile sizes (within 95% and more of the optimal) for dsyrk-3000x3000 with
i- j-k loop ordering on 8a Nehalem and 8b Power7.

For all the plots in Figures 7-11, we see that although a small number of points
lie outside the bounded search space, the vast majority of best points lie inside it. The
density of good solutions in the space is thus very much larger than in the non-pruned
space. For all the benchmarks, we found that an optimal tile was within the bounded
search region. Figures 7-11 also show that the best tile sizes are relatively smaller on

5 Data for Xeon are not included due to space limitations.

Fig. 9: Best tile sizes (within 95% and more of the optimal) for 2d-jacobi-50x4000x4000
with t-i- j loop ordering on 9a Nehalem and 9b Power7.

Fig. 10: Best tile sizes (within 95% and more of the optimal) for dtrmm-3000x3000
with i- j-k loop ordering on 10a Nehalem and 10b Power7.

Fig. 11: Best tile sizes (within 95% and more of the optimal) for 2d-fdtd-
100x2000x2000 with t-i- j loop ordering on 11a Nehalem and 11b Power7.

Nehalem, and larger on Power7. For example, the best points in dsyrk are within the
region of (Ti≤ 400, Tj≤ 50, Tk≤ 100) on both Nehalem and Xeon. However, the best
points on Power7 are distributed much more broadly, up to the maximum size of 3000.
This trend pertains to the impact of the level-1 TLB size on each system; the small
(4KB) page size on Nehalem and Xeon causes the best tile sizes to be small, while the
large (64KB) page size on Power7 allows much larger tiles without causing severe TLB

misses. These differences are directly reflected in the upper boundary of the DL/ML
model, which covers a larger region for Power7 than the other machines. As discussed
in Section 5.2, the outermost tile size (x axis) is bounded above only by the inter-
tile reuse constraints due to the highest level of cache and TLB. It is obvious that the
outermost tile size boundaries also contribute to search space reduction in Figures 7-11.

Table 2 shows the ratio of the space considered in the DL/ML range for the three
architectures, compared to the full space of tile sizes. This ratio corresponds to the
minimal acceleration factor for an exhaustive or random empirical search compared to
using the full space. The factor is much lower for Power7 due to the larger page size,
as explained above. In order to assess the impact of using published versus effective
capacities, we repeated our analysis also using the published capacity for the highest
level of cache instead of the effective capacity. We found the reduction in search space
by use of the ML model was virtually identical with use of published size or effective
size (Table 2), with one exception: for matmult with 3000×3000 size on Power7, the
reduction rate decreased from 93.79 to 84.01. This is because the constraint due to
the highest level of cache did not affect the search space boundaries for the evaluated
benchmarks and platforms except for Power7/matmult.

Table 2: Search space reduction factor across different architectures
Problem Size Xeon Power 7 Nehalem

matmul
600x600 81.12 1.46 21.90

3000x3000 8710.81 93.79 1856.49

dsyrk
1000x1000 492.24 2.04 91.62
3000x3000 11879.67 83.99 1978.26

dtrmm
600x600 41.37 2.31 32.74

3000x3000 2565.00 1142.23 1238.24
2d-jacobi 50x4000 3102.90 76.43 693.45
2d-fdtd 100x2000x2000 1307.19 45.55 358.74

6.3 Summary of Experiments

1-Level Tiling We summarize our experiments for 1-level tiling in Table 3. We re-
port, for each benchmark and each architecture, the execution time (in seconds) of the
original, untiled code in the Untiled Time column. DL reports the tile sizes and its ex-
ecution time as obtained by the purely analytical approach using the DL model [12];
Best Square Tile reports the tile sizes and execution time obtained by an exhaustive
empirical search only for square tile sizes; and Best DL/ML is obtained by an exhaustive
empirical search in the DL/ML range. The Best DL/ML point was also the globally op-
timal point in the whole search space for all programs/platforms. We observed that the
optimal points represent non-square tile sizes for all cases. For efficient vectorization on
all three platforms, the vectorized dimension should correspond to a sufficiently large
tile size. Furthermore, the different temporal/spatial data reuse pattern along different
dimensions contributes to the unequal sizes of tiles in the different dimensions for the
optimal choices.
Empirical search using DL/ML model This section demonstrates the integration of
the analytical bounds with existing search optimization algorithms, the Nelder-Mead
Simplex method [22] and the Parallel Rank Ordering (PRO) method [30]. In order to

Table 3: 1-level Tiling Results (Time in seconds, N: Nehalem, P: Power7, X: Xeon)
Untiled DL Best Square Tile Best DL/ML Impr. by DL/ML
Time Tile Size Time Tile size Time Tile size Time vs. DL vs. Sq.

matmult-N 33.25 (40, 40, 30) 16.40 (80,80,80) 17.27 (150, 30, 80) 13.48 1.22× 1.28×
matmult-P 25.46 (50, 30, 20) 13.90 (80,80,80) 12.28 (90, 10, 120) 10.60 1.31× 1.15×
matmult-X 153.66 (40, 40, 30) 29.51 (50,50,50) 23.98 (100, 20, 120) 18.35 1.60× 1.31×
dsyrk-N 25.39 (30, 40, 40) 15.47 (80,80,80) 15.54 (30, 30, 90) 12.50 1.23× 1.24×
dsyrk-P 23.32 (40, 30, 30) 15.10 (300,300,300) 10.86 (60, 10, 1000) 9.16 1.64× 1.19×
dsyrk-X 84.89 (30, 40, 40) 26.08 (120,120,120) 25.44 (100, 30, 80) 18.19 1.43× 1.40×
dtrmm-N 142.42 (40, 40, 30) 19.20 (60,60,60) 18.87 (150, 30, 60) 18.20 1.05× 1.04×
dtrmm-P 62.74 (30, 50, 20) 14.60 (60,60,60) 13.06 (600, 30, 32) 11.96 1.22× 1.09×
dtrmm-X 114.70 (40, 40, 30) 28.98 (120,120,120) 29.13 (30, 10, 120) 23.49 1.23× 1.24×
2d-jacobi-N 2.43 (10, 40, 10) 2.60 (50,50,50) 2.24 (10, 8, 150) 2.16 1.20× 1.04×
2d-jacobi-P 2.10 (10, 40, 10) 2.09 (10,50,50) 1.31 (10, 40, 120) 1.19 1.76× 1.10×
2d-jacobi-X 8.75 (10, 40, 10) 2.77 (10,8,8) 2.81 (50, 40, 20) 2.54 1.09× 1.11×
2d-fdtd-N 15.35 (10, 60, 8) 2.41 (50, 8, 8) 2.35 (50, 50, 8) 2.26 1.07× 1.04×
2d-fdtd-P 9.56 (10, 40, 1) 6.90 (50,70,70) 2.11 (40,70,40) 2.09 3.30× 1.01×
2d-fdtd-X 16.42 (10, 60, 8) 4.47 (100,40,40) 4.22 (50,100,8) 4.01 1.11× 1.05×

handle boundary constraints due to the DL/ML model, we used the extended version
of the PRO algorithm introduced in the Active Harmony framework [32]. The same
extension to handle boundaries was employed in our implementation of the Simplex
method, and its stopping criteria are based on the work by Luersen [21]. Regarding
initial simplex selection for our Simplex search implementation, we used a model-
driven approach based on the DL model for square tiling. The square tile size tuple,
T 1 = T 2 = T 3, which satisfies the DL capacity constraint is selected as one vertex of
the initial simplex. Other tree vertices were chosen so as to form a regular triangular
pyramid. Note that all the studied kernel loops are triply nested and the simplex always
has four vertices. The initial simplex is bounded by the upper and lower tile sizes in
addition to the DL/ML bounds.

Table 4 shows the total execution time for the whole empirical tuning, the best tile
size found by each approach, and its execution time. The DL/ML bounds significantly
reduced the total tuning time by a factor of 1.02 to 4.95 on Nehalem, 1.33 to 2.48 on
Power7, and 2.95 to 4.66 on Xeon. Furthermore, the Simplex and PRO methods us-
ing DL/ML boundary constraints found better tile sizes than the cases without DL/ML
bounds, except for the simplex method on Nehalem. The tile size search space con-
tains various local optimal points, and these empirical search approaches not using the
boundary constraints got stuck at local optima far from the global optimal point. Note
that these search methods can take arbitrary tile sizes in the search space, and hence
found slightly better tile sizes in some cases than Table 3, which shows the result of
scanning the search space with strided access.
Parallel execution of tiled code Table 5 reports the best tile sizes found by an exhaus-
tive empirical search using DL/ML bounds when the outer-most tiling loop is paral-
lelized with OpenMP parallel for directives. It shows the speedup with respect to
the untiled sequential execution when running each program with all cores (parallel)
and when running with a single core (sequential, same as Table 3). Although the per-
formance with parallelization is not always better than sequential, the best tile sizes for

Table 4: Empirical Search Results for 1-level Tiling
Without DL/ML Bounds With DL/ML Bounds

Total [sec] Best Size / Time [sec] Total [sec] Best Size / Time [sec]
matmult-nehalem-simplex 3173.36 (17, 120, 1369) / 13.86 640.98 (36, 56, 64) / 14.71
matmult-nehalem-pro 1294.88 (52, 344, 2270) / 15.64 380.73 (36, 80, 29) / 15.24
matmult-power7-simplex 940.81 (114,1142,858) / 11.4 709.22 (22,82,117) / 11.32
matmult-power7-pro 691.01 (172,1784,2989) / 11.39 442.26 (28,72,126) / 10.58
matmult-xeon-simplex 4268.52 (98,1257,1258) / 21.69 1039.69 (35,56,57) / 19.52
matmult-xeon-pro 2453.03 (97,904,1315) / 21.81 831.73 (31,64,56) / 19.22
2d-jacobi-nehalem-simplex 88.84 (42, 465, 498) / 2.25 26.48 (34,15,64) / 2.32
2d-jacobi-nehalem-pro 51.09 (29, 2001, 2000) / 2.41 50.33 (25,10,627) / 2.2
2d-jacobi-power7-simplex 96.95 (50,37,92) / 1.15 54.94 (50,28,116) / 1.14
2d-jacobi-power7-pro 83.98 (25,8,3495) / 1.61 33.81 (10,53,84) / 1.17
2d-jacobi-xeon-simplex 351.52 (50,40,16) / 2.49 75.49 (50,33,16) / 2.49
2d-jacobi-xeon-pro 248.12 (26,1976,2098) / 8.85 57.34 (10,12,21) / 2.75

parallelized benchmarks also lie in the region bounded by the proposed DL/ML model
except for dtrmm and jacobi-2d on Xeon, whose parallel performance is lower than
sequential performance. This performance degradation results from inefficient data dis-
tribution, which may also cause unexpected effects on tile size selection.

Table 5: Parallel 1-level Tiling Results
Optimal Point (parallel) Optimal Point (sequential)

Tile Speedup vs. Tile Speedup vs.
Size Untiled Seq. Size Untiled Seq.

matmult-nehalem (8 Threads) (80, 10, 120) 9.39× (150, 30, 80) 2.47×
matmult-power7 (32 Threads) (100, 1, 300) 15.24× (90, 10, 120) 2.40×
matmult-xeon (8 Threads) (150, 32, 80) 57.12× (100, 20, 120) 8.37×
dsyrk-nehalem (8 Threads) (150, 30, 120) 0.86× (30, 30, 90) 2.03×
dsyrk-power7 (32 Threads) (32, 70, 300) 13.79× (60, 10, 1000) 2.54×
dsyrk-xeon (8 Threads) (30, 10, 90) 3.64× (100, 30, 80) 4.66×
dtrmm-nehalem (8 Threads) (32, 50, 32) 0.93× (150, 30, 60) 7.83×
dtrmm-power7 (32 Threads) (10, 30, 100) 1.90× (600, 30, 32) 5.25×
dtrmm-xeon (8 Threads) (1, 1, 30) 1.69× (30, 10, 120) 4.88×
2d-jacobi-nehalem (8 Threads) (10, 50, 120) 1.77× (10, 8, 150) 1.13×
2d-jacobi-power7 (32 Threads) (10, 32, 120) 2.12× (10, 40, 120) 1.76×
2d-jacobi-xeon (8 Threads) (10, 40, 600) 3.06× (50, 40, 20) 3.44×
2d-fdtd-nehalem (8 Threads) (30, 80, 8) 14.08× (50, 50, 8) 6.79×
2d-fdtd-power7 (32 Threads) (10, 80, 8) 15.17× (40, 70, 40) 4.57×
2d-fdtd-xeon (8 Threads) (10, 60, 8) 11.99× (50, 100, 8) 4.09×

7 Related Work
Exploiting data locality is a key issue in achieving high levels of performance and tiling
has been widely used to improve data locality in loop nests. Nevertheless, the choice
of tile sizes greatly influences the realized performance. Wolf and Lam [34] were the
first to provide precise definitions of reuse and locality and develop transformations to
improve locality. Ferrante el al. [12], Wolf and Lam [34], and Bodin et al. [5] were
among the earliest to develop cache estimation techniques designed for data locality

optimizations. Several authors proposed techniques for selecting tile sizes aimed at re-
ducing self-interference misses [10, 20]. Ghosh et al. [13] developed cache miss equa-
tions to find sizes of the largest tiles that eliminate self-interference, while fitting in
cache. Chame and Moon [8] developed techniques to minimize the sum of the capac-
ity and cross-interference misses while avoiding self-interference misses. Rivera and
Tseng [26] developed padding techniques to reduce interference misses and studied the
effect of multi-level caches on data locality optimizations. Hsu and Kremer [16] pre-
sented a comprehensive comparative study of tile size selection algorithms. To the best
of our knowledge, all of these techniques find a single tile size for each loop that is
being tiled. Recently, Yuki et al. [38] have explored the automatic creation of cubic tile
size models. In contrast, we have demonstrated (see Table 3) that the best performance
is often realized only for rectangular tiles.

Search-based techniques for finding tile sizes (and unroll factors) have received
much attention in performance optimization [4, 19, 31–33]. The ATLAS system em-
ploys extensive empirical tuning to find the best tile sizes for different problem sizes in
the BLAS library; tuning is done once at installation. Unfortunately such an approach
is not suited for general tiled codes, as the search process is tuned for dense linear alge-
bra codes only. Only square tile sizes are considered, which significantly hampers the
performance of a variety of codes (such as stencil codes) that require rectangular tiles
for best performance. Furthermore, ATLAS currently includes a simplistic model where
tile sizes are searched as to not exceed the square root of the L1 cache size. Our ana-
lytical bounds offer a significantly higher accuracy, capturing both intra- and inter-tile
reuse at various cache level.

Kisuki et al. [19] have used different techniques such as genetic algorithms and
simulated annealing to manage the size of the search space. Tiwari et al. [32] note: “a
key challenge that faces auto-tuners, especially as we expand the scope of their capabili-
ties, involves scalable search among alternative implementations.” The Active Harmony
project [31, 32] uses several different algorithms to reduce the size of the search space
such as the Nelder-Mead simplex algorithm. In contrast to these approaches, we use
a pair of analytical models — a conservative model that overestimates the number of
cache lines by ignoring lifetimes and an aggressive model that underestimates the num-
ber of cache lines — each leading to different sets of tile sizes, which are used to bound
the search space. With our technique, any of the algorithms from [19, 31, 32] can be
used to further reduce the search time.

8 Conclusion
In this paper we developed a novel approach to analytically bound the search space for
tile size selection based on two models, a conservative model (DL) that ignores intra-
tile cache block replacement and a new aggressive model (ML) that assumes optimal
replacement. We described how empirical search can be restricted (pruned) by the two
models (DL and ML). Search space reductions ranging from 45× - 11,879× were ob-
tained by using this pruning technique for five benchmarks on three different platforms.
Our experimental results for single-level tiling on different benchmarks show that al-
most all tile sizes that deliver 95% or more of the optimal performance fall between
the ML and DL bounds used in our approach. Furthermore, we demonstrated the inte-
gration of the analytical bounds with existing search optimization algorithms, and the

experimental results show that the total search time was reduced by factors ranging from
1.02× to 4.95×. The experiments for parallel execution show that our DL/ML model
is also effective for tile size selection of parallelized programs. Taken together, these
experimental results make a convincing case of the effectiveness of our new approach
to model-driven empirical search for tile sizes.

For future work, we propose to extend our approach to multi-level tiling, and also to
leverage correlation studies to identify which levels of the memory hierarchy are most
closely tied to performance and compute DL and ML bounds for those hierarchy levels.

Acknowledgments We thank the reviewers for their feedback and suggestions to improve
the presentation of the paper, and we are grateful to Jill Delsigne for her assistance with proof-
reading the final version of this paper. This work was supported in part by the Defense Advanced
Research Projects Agency through AFRL Contract FA8650-09-C-7915, the Center for Domain-
Specific Computing (CDSC) funded by the NSF Expedition in Computing Award CCF-0926127,
the U.S. National Science Foundation through awards 0811457, 0811781, 0926687 and 0926688,
and by the U.S. Army through contract W911NF-10-1-0004. The opinions and findings in this
document do not necessarily reflect the views of the United States Government, Rice University,
Ohio State University or Louisiana State University.

References

1. T. W. Barr, A. L. Cox, and S. Rixner. Translation caching: skip, don’t walk (the page table).
In ISCA ’10, pages 48–59, New York, NY, USA, 2010. ACM.

2. M. Baskaran, A. Hartono, S. Tavarageri, T. Henretty, J. Ramanujam, and P. Sadayappan.
Parameterized tiling revisited. In CGO, pages 200–209, 2010.

3. R. Bhargava, B. Serebrin, F. Spadini, and S. Manne. Accelerating two-dimensional page
walks for virtualized systems. In ASPLOS XIII, pages 26–35, 2008.

4. J. Bilmes, K. Asanovic, C. Chin, and J. Demmel. Optimizing matrix multiply using PHiPAC.
In Proc. ICS, pages 340–347, 1997.

5. F. Bodin, W. Jalby, D. Windheiser, and C. Eisenbeis. A quantitative algorithm for data
locality optimization. In Code Generation, pages 119–145, 1991.

6. U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic poly-
hedral program optimization system. In PLDI, 2008.

7. P. Boulet, A. Darte, T. Risset, and Y. Robert. (Pen)-ultimate tiling? Integration, the VLSI
Journal, 17(1):33–51, 1994.

8. J. Chame and S. Moon. A tile selection algorithm for data locality and cache interference.
In ICS, pages 492–499, 1999.

9. C. Chen, J. Chame, and M. Hall. Combining models and guided empirical search to optimize
for multiple levels of the memory hierarchy. In CGO’05, 2005.

10. S. Coleman and K. McKinley. Tile Size Selection Using Cache Organization and Data Lay-
out. In PLDI, pages 279–290, 1995.

11. K. Datta. Auto-tuning stencil codes for cache-based multicore platforms. Technical report,
University of California, Berkeley, Dec. 2009.

12. J. Ferrante, V. Sarkar, and W. Thrash. On Estimating and Enhancing Cache Effectiveness.
Proc. LCPC 91, 589:328–343, 1991.

13. S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: a compiler framework for
analyzing and tuning memory behavior. ACM TOPLAS, 21(4):703–746, 1999.

14. K. Goto and R. A. van de Geijn. High-performance implementation of the level-3 BLAS.
ACM Trans. Math. Softw., 35(1), July 2008.

15. A. Hartono, M. M. Baskaran, C. Bastoul, A. Cohen, S. Krishnamoorthy, B. Norris, J. Ra-
manujam, and P. Sadayappan. Parametric multi-level tiling of imperfectly nested loops. In
Proc. ICS, 2009.

16. C. Hsu and U. Kremer. A quantitative analysis of tile size selection algorithms. J. Super-
comput., 27(3):279–294, 2004.

17. F. Irigoin and R. Triolet. Supernode partitioning. In ACM POPL, pages 319–329, 1988.
18. D. Kim, L. Renganarayanan, M. Strout, and S. Rajopadhye. Multi-level tiling: ’m’ for the

price of one. In SC, 2007.
19. P. M. W. Knijnenburg, T. Kisuki, and M. F. P. O’Boyle. Combined selection of tile sizes

and unroll factors using iterative compilation. The Journal of Supercomputing, 24(1):43–67,
2003.

20. M. Lam, E. Rothberg, and M. Wolf. The cache performance and optimizations of blocked
algorithms. In Proc. 4th ACM ASPLOS, pages 63–74, 1991.

21. M. Luersen, R. L. Riche, and F. Guyon. A constrained, globalized, and bounded nelder-
mead method for engineering optimization. Structural and Multidisciplinary Optimization,
27(1-2):43–54, 2004.

22. J. A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal,
7(4):308–313, 1965.

23. J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration spaces for multicom-
puters. JPDC, 16(2):108–230, 1992.

24. L. Renganarayana, D. Kim, S. Rajopadhye, and M. Strout. Parameterized tiled loops for
free. In PLDI, pages 405–414, 2007.

25. Resource Characterization in the PACE Project. http://www.pace.rice.edu/Content.
aspx?id=41.

26. G. Rivera and C. Tseng. Locality optimizations for multi-level caches. In SC, 1999.
27. V. Sarkar. Automatic Selection of High Order Transformations in the IBM XL Fortran Com-

pilers. IBM J. Res. & Dev., 41(3), May 1997.
28. V. Sarkar and N. Megiddo. An analytical model for loop tiling and its solution. In IEEE

ISPASS, 2000.
29. R. Schreiber and J. Dongarra. Automatic blocking of nested loops. Tech. Report 90.38,

RIACS, NASA Ames Research Center, 1990.
30. V. Tabatabaee, A. Tiwari, and J. K. Hollingsworth. Parallel parameter tuning for applications

with performance variability. In Proc. Supercomputing ’05, 2005.
31. C. Tapus, I.-H. Chung, and J. K. Hollingsworth. Active harmony: towards automated perfor-

mance tuning. In SC, pages 1–11, 2002.
32. A. Tiwari, C. Chen, J. Chame, M. Hall, and J. Hollingsworth. Scalable autotuning framework

for compiler optimization. In IPDPS ’09, 2009.
33. R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimization of software

and the ATLAS project. Parallel Computing, 27(1–2):3–35, 2001.
34. M. Wolf and M. S. Lam. A data locality optimizing algorithm. In PLDI ’91, pages 30–44,

1991.
35. M. Wolfe. More iteration space tiling. In Proc. Supercomputing, pages 655–664, 1989.
36. J. Xue. Loop tiling for parallelism. Kluwer Academic Publishers, Norwell, MA, USA, 2000.
37. K. Yotov, K. Pingali, and P. Stodghill. Think globally, search locally. In International Con-

ference on Supercomputing, 2005.
38. T. Yuki, L. Renganarayanan, S. Rajopadhye, C. Anderson, A. Eichenberger, and K. O’Brien.

Automatic creation of tile size selection models. In CGO, pages 190–199, 2010.

